Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis
نویسندگان
چکیده
Mitochondria are key cellular signaling platforms, affecting fundamental processes such as cell proliferation, differentiation and death. However, it remains unclear how mitochondrial signaling affects other organelles, particularly lysosomes. Here, we demonstrate that mitochondrial respiratory chain (RC) impairments elicit a stress signaling pathway that regulates lysosomal biogenesis via the microphtalmia transcription factor family. Interestingly, the effect of mitochondrial stress over lysosomal biogenesis depends on the timeframe of the stress elicited: while RC inhibition with rotenone or uncoupling with CCCP initially triggers lysosomal biogenesis, the effect peaks after few hours and returns to baseline. Long-term RC inhibition by long-term treatment with rotenone, or patient mutations in fibroblasts and in a mouse model result in repression of lysosomal biogenesis. The induction of lysosomal biogenesis by short-term mitochondrial stress is dependent on TFEB and MITF, requires AMPK signaling and is independent of calcineurin signaling. These results reveal an integrated view of how mitochondrial signaling affects lysosomes, which is essential to fully comprehend the consequences of mitochondrial malfunction, particularly in the context of mitochondrial diseases.
منابع مشابه
Defect of mitochondrial respiratory chain is a mechanism of ROS overproduction in a rat model of alcoholic liver disease: role of zinc deficiency.
Morphological and functional alterations of hepatic mitochondria have been documented in patients with alcoholic liver disease (ALD). Our recent study demonstrated that zinc level was decreased in whole liver and mitochondria by chronic alcohol feeding. The present study was undertaken to determine whether zinc deficiency mediates alcohol-induced mitochondrial electron transport chain (ETC) def...
متن کاملEvidence for Mitochondrial Respiratory Deficiency in Rat Rhabdomyosarcoma Cells
BACKGROUND Mitochondria can sense signals linked to variations in energy demand to regulate nuclear gene expression. This retrograde signaling pathway is presumed to be involved in the regulation of myoblast proliferation and differentiation. Rhabdomyosarcoma cells are characterized by their failure to both irreversibly exit the cell cycle and complete myogenic differentiation. However, it is c...
متن کاملMolecular Mechanisms for Age-Associated Mitochondrial Deficiency in Skeletal Muscle
The abundance, morphology, and functional properties of mitochondria decay in skeletal muscle during the process of ageing. Although the precise mechanisms remain to be elucidated, these mechanisms include decreased mitochondrial DNA (mtDNA) repair and mitochondrial biogenesis. Mitochondria possess their own protection system to repair mtDNA damage, which leads to defects of mtDNA-encoded gene ...
متن کاملLysosomal Oxidative Stress Cytotoxicity Induced By Para-phenylenediamine Redox Cycling In Hepatocytes
It has already been reported that muscle necrosis induced by various phenylenediamine derivatives are correlated with their autoxidation rate. Now in a more detailed investigation of the cytotoxic mechanism using a model system of isolated hepatocytes and ring-methylated structural isomer durenediamine (DD) we have shown that under aerobic conditions, phenylenediamine induced cytotoxicity and R...
متن کاملLysosomal Oxidative Stress Cytotoxicity Induced By Para-phenylenediamine Redox Cycling In Hepatocytes
It has already been reported that muscle necrosis induced by various phenylenediamine derivatives are correlated with their autoxidation rate. Now in a more detailed investigation of the cytotoxic mechanism using a model system of isolated hepatocytes and ring-methylated structural isomer durenediamine (DD) we have shown that under aerobic conditions, phenylenediamine induced cytotoxicity and R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017